Neurophysiologische Diagnostik für personalisierte Neurofeedback-Protokolle

Ein integrativer Ansatz zur Verbesserung von Neurofeedback-Therapien durch umfassende neurophysiologische Diagnostik unter Berücksichtigung von Symptomen, EEG, ERP, Arousal und Vigilanz. Der NFB-Protokoll Designer ist Teil des Copiloten und basiert auf dem diagnostischen Report.

Die Grenzen symptombasierter Diagnostik

Heterogene Symptomatik

Ähnliche Symptome können aus unterschiedlichen neurophysiologischen Grundlagen resultieren, was eine rein symptombasierte Behandlung unzureichend macht.

Komorbidität

Das gleichzeitige Auftreten mehrerer Störungen erschwert die korrekte Zuordnung von Symptomen zu spezifischen neurophysiologischen Mechanismen.

Individuelle Variabilität

Die hohe interindividuelle Variabilität in Hirnfunktion und struktur erfordert personalisierte Ansätze jenseits standardisierter Symptomklassifikationen.

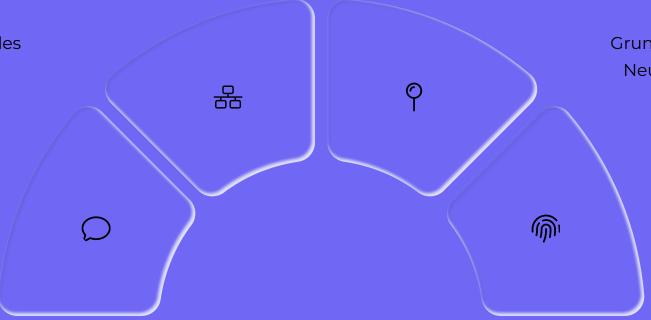
EEG als fundamentales Diagnoseinstrument

Spektralanalyse

Identifikation spezifischer
Frequenzbandaktivitäten
(Delta, Theta, Alpha, Beta,
Gamma) zur
Charakterisierung
funktioneller Zustände des
Gehirns

Konnektivitätsanalyse

Erfassung der funktionellen


und effektiven
Verbindungen zwischen
verschiedenen Hirnregionen

Topografische Kartierung

Räumliche Darstellung der Hirnaktivität zur Lokalisierung funktioneller Abweichungen

Individuelle Profilerstellung

Erstellung eines
neurophysiologischen
Fingerabdrucks als
Grundlage für personalisierte
Neurofeedback-Protokolle

Ereigniskorrelierte Potentiale (ERP) in der Diagnostik

Reizdarbietung

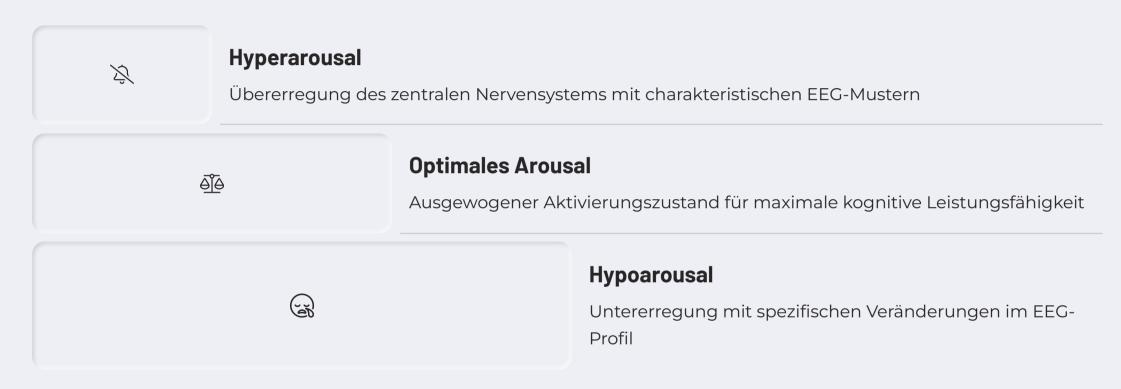
Präsentation spezifischer sensorischer, kognitiver oder emotionaler Stimuli

Neuronale Verarbeitung

Messung der zeitabhängigen Reaktion des Gehirns auf den dargebotenen Reiz

Komponentenanalyse

 $|\leftrightarrow|$


(

Identifikation spezifischer ERP-Komponenten (P300, N400, ERN) und ihrer Abweichungen von Normwerten

Funktionelle Diagnose

Ableitung funktioneller Defizite in spezifischen kognitiven Domänen wie Aufmerksamkeit, Gedächtnis oder exekutiven Funktionen

Arousal und Vigilanz als diagnostische Parameter

Die Regulation von Arousal und Vigilanz ist entscheidend für kognitive Funktionen und emotionale Stabilität. Störungen in diesen Systemen manifestieren sich in charakteristischen EEG-Mustern und können durch personalisierte Neurofeedback-Protokolle gezielt adressiert werden.

Integration multipler Diagnoseparameter

Entwicklung personalisierter Neurofeedback- Protokolle

Neurophysiologische Ausgangsdiagnostik

Umfassende Erhebung des individuellen neurophysiologischen Profils mittels EEG, ERP, Arousal- und Vigilanzdiagnostik.

Implementierung und Monitoring

Durchführung des personalisierten Neurofeedback-Trainings mit kontinuierlicher Erfassung der neurophysiologischen Veränderungen.

Protokollentwicklung

Ableitung spezifischer Trainingsziele und parameter auf Basis der diagnostischen Ergebnisse unter Berücksichtigung individueller Kompensationsmechanismen.

Adaptation und Optimierung

Fortlaufende Anpassung des Protokolls basierend auf den erzielten neurophysiologischen Veränderungen und klinischen Fortschritten.

Klinische Anwendungsbereiche und Fallbeispiele

ADHS

Bei Aufmerksamkeitsdefizit-Hyperaktivitätsstörung zeigen sich häufig Theta/Beta-Ratio-Abweichungen und P300-Anomalien, die durch personalisierte Protokolle adressiert werden können. Fallstudien belegen eine Normalisierung des EEG-Profils nach gezieltem Training.

Angststörungen

Bei Patienten mit Angststörungen werden oft Hyperarousal-Zustände und spezifische Alpha-Asymmetrien im frontalen Kortex diagnostiziert.

Personalisierte Protokolle zur Normalisierung dieser Parameter zeigen signifikante

Symptomreduktionen.

Depression

Depressive Störungen korrelieren häufig mit frontalen Alpha-Asymmetrien und Hypoarousal-Zuständen. Individuelle Neurofeedback-Protokolle zur Normalisierung dieser Parameter führen zu messbaren klinischen Verbesserungen und neurophysiologischen Anpassungen.